Hard and Easy Instances of L-Tromino Tilings

نویسندگان

  • Javier T. Akagi
  • Carlos F. Gaona
  • Fabricio Mendoza
  • Marcos Villagra
چکیده

In this work we study tilings of regions in the square lattice with L-shaped trominoes. Deciding the existence of a tiling with L-trominoes for an arbitrary region in general is NP-complete, nonetheless, we indentify restrictions to the problem where either it remains NP-complete or it has a polynomial time algorithm. First we show that an aztec diamond of order n always has an L-tromino tiling if and only if n(n+1) ≡ 0 mod 3; if an aztec diamond has at least two defects or holes, however, the problem of deciding a tiling is NP-complete. Then we study tilings of arbitrary regions where only 180◦ rotations of L-trominoes are available. For this particular case we show that deciding the existence of a tiling remains NP-complete, yet, if a region contains certain so-called “forbidden polyominoes” as subregions, then there exists a polynomial time algorithm for deciding a tiling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parity and tiling by trominoes

The problem of counting tilings by dominoes and other dimers and finding arithmetic significance in these numbers has received considerable attention. In contrast, little attention has been paid to the number of tilings by more complex shapes. In this paper, we consider tilings by trominoes and the parity of the number of tilings. We mostly consider reptilings and tilings of related shapes by t...

متن کامل

Faultfree Tromino Tilings of Rectangles

In this paper we consider faultfree tromino tilings of rectangles and characterize rectangles that admit such tilings. We introduce the notion of crossing numbers for tilings and derive bounds on the crossing numbers of faultfree tilings. We develop an iterative scheme for generating faultfree tromino tilings for rectangles and derive the closed form expression for the exact number of faultfree...

متن کامل

Some Polyomino Tilings of the Plane

We calculate the generating functions for the number of tilings of rectangles of various widths by the right tromino, the L tetromino, and the T tetromino. This allows us to place lower bounds on the entropy of tilings of the plane by each of these. For the T tetromino, we also derive a lower bound from the solution of the Ising model in two dimensions.

متن کامل

Hard Tiling Problems with Simple Tiles

It is well-known that the question of whether a given finite region can be tiled with a given set of tiles is NP-complete. We show that the same is true for the right tromino and square tetromino on the square lattice, or for the right tromino alone. In the process, we show that Monotone 1-in-3 Satisfiability is NP-complete for planar cubic graphs. In higher dimensions, we show NP-completeness ...

متن کامل

Tromino tilings of domino-deficient rectangles

In this paper I have settled the open problem, posed by J. Marshall Ash and S. Golomb in [4], of tiling an m × n rectangle with L-shaped trominoes, with the condition that 3 |(mn 2) and a domino is removed from the given rectangle. It turns out that for any given m, n ≥ 7, the only pairs of squares which prevent a tiling are {(1,2), (2,2)}, {(2,1), (2,2)}, {(2,3), (2,4)}, {(3,2), (4,2)} and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.04640  شماره 

صفحات  -

تاریخ انتشار 2017